Adenosine A2A receptors promote adenosine-stimulated wound healing in bronchial epithelial cells.
نویسندگان
چکیده
Adenosine produces a wide variety of physiological effects through the activation of specific adenosine receptors (A(1), A(2A), A(2B), A(3)). Adenosine, acting particularly at the A(2A) adenosine receptor (A(2A)AR), is a potent endogenous anti-inflammatory agent and sensor of inflammatory tissue damage. The complete healing of wounds is the final step in a highly regulated response to injury. Recent studies on epidermal wounds have identified the A(2A)AR as the main adenosine receptor responsible for altering the kinetics of wound closure. We hypothesized that A(2A)AR promotes wound healing in bronchial epithelial cells (BECs). To test this hypothesis, the human BEC line BEAS-2B and bovine BECs (BBECs) were used. Real-time RT-PCR of RNA from unstimulated BEAS-2B cells revealed transcriptional expression of A(1), A(2A), A(2B) and A(3) receptors. Western blot analysis of lysates from BEAS-2B cells and BBECs detected a single band at 44.7 kDa in both the BECs, indicating the presence of A(2A)AR. In a wound healing model, we found that adenosine stimulated wound repair in cultured BBECs in a concentration-dependent manner, with an optimal closure rate observed between 4 and 6 h. Similarly, the A(2A)AR agonist 5'-(N-cyclopropyl)carboxamidoadenosine (CPCA) augmented wound closure, with a maximal closure rate occurring between 4 and 6 h. Inhibition of A(2A)AR with ZM-241385, a known A(2A)AR antagonist, impeded wound healing. In addition, ZM-241385 also attenuated adenosine-mediated wound repair. Kinase studies revealed that adenosine-stimulated airway repair activates PKA by ligating A(2A)AR. Collectively, the data suggest that the A(2A)AR is involved in BEC adenosine-stimulated wound healing and may prove useful in understanding purinergic-mediated actions on airway epithelial repair.
منابع مشابه
Fibrocytes in health and disease
Fibrocytes, a group of bone marrow-derived mesenchymal progenitor cells, were first described in 1994 as fibroblast-like, peripheral blood cells that migrate to regions of tissue injury. These cells are unique in their expression of extracellular matrix proteins concomitantly with markers of hematopoietic and monocyte lineage. The involvement of fibrocytes and the specific role they play in the...
متن کاملCigarette Smoke Impairs A2A Adenosine Receptor Mediated Wound Repair through Up-regulation of Duox-1 Expression
Cigarette smoke (CS) exposure and intrinsic factors such as the NADPH oxidases produce high levels of reactive oxygen species (ROS), ensuing inflammatory tissue injury. We previously demonstrated that CS-generated ROS, particularly hydrogen peroxide (H2O2), impaired adenosine stimulated wound repair. We hypothesized that CS exposure modulates expression of Dual oxidase 1 (Duox-1), a NADPH oxida...
متن کاملThymoquinone, the main constituent of Nigella sativa, affects adenosine receptors in asthmatic guinea pigs
Objective(s): For determining the mechanism of anti-asthmatic effect of thymoquinone, this investigation evaluated the effect of thymoquinone in the presence of selective A2A and A2B adenosine receptor antagonists (ZM241385 and MRS1706, respectively). Materials and Methods: Seventy guinea pigs were randomly divided to 7 groups; control (C), sensitized with ovalbumin (S), sensitized groups pretr...
متن کاملAdenosine A2A receptor stimulation increases angiogenesis by down-regulating production of the antiangiogenic matrix protein thrombospondin 1.
Topical adenosine A2A receptor agonists promote wound healing by, among other effects, increasing microvessel formation. Results of representational display analysis of human umbilical vein endothelial cells suggested that A2A receptor occupancy modulates expression of the antiangiogenic matrix protein thrombospondin 1 (TSP1). We therefore determined whether A2A receptor occupation stimulates a...
متن کاملThe role of adenosine A3 receptors in cytotoxicity of the breast cancer cell lines
The nucleoside adenosine is present within cells and body fluids of all living organisms and its production, both intra- and extracellularly, is tightly coupled to energy consumption resulting in increased level of extracellular adenosine. The physiological effects of adenosine are mediated through four pharmacologically and biochemically distinct adenosine receptors (AR), i.e. A1, A2A, A2B and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 290 5 شماره
صفحات -
تاریخ انتشار 2006